Volver a Guía
Ir al curso
CURSO RELACIONADO
Análisis Matemático 66
2025
GUTIERREZ (ÚNICA)
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)
3.
Calcule el polinomio de Taylor de las siguientes funciones hasta el orden indicado en el punto dado
a) $f(x)=\frac{1}{1-x}$ orden 5 $x_{0}=0$
a) $f(x)=\frac{1}{1-x}$ orden 5 $x_{0}=0$
Respuesta
Nos piden encontrar el polinomio de Taylor de orden $5$ centrado en $x=0$ de la función $f(x)=\frac{1}{1-x}$
Reportar problema
Sabemos que el polinomio de Taylor que estamos buscando tiene esta estructura:
$ p(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f^{(3)}(0)x^3}{3!} + \frac{f^{(4)}(0)x^4}{4!} + \frac{f^{(5)}(0)x^5}{5!} $
Entonces vamos a arrancar buscando las derivadas que necesitamos de $f$ y evaluándolas en $x=0$ para completar las piezas que nos faltan:
$f(x)=\frac{1}{1-x}$
$f(0) = 1$
$ f'(x) = \frac{1}{(1-x)^2} $
$ f'(0) = 1 $
$ f''(x) = \frac{2}{(1-x)^3} $
$ f''(0) = 2 $
$ f^{(3)}(x) = \frac{6}{(1-x)^4} $
$ f^{(3)}(0) = 6 $
$ f^{(4)}(x) = \frac{24}{(1-x)^5} $
$ f^{(4)}(0) = 24 $
$ f^{(5)}(x) = \frac{120}{(1-x)^6} $
$ f^{(5)}(0) = 120 $
Perfecto, ahora reemplazamos en la estructura de nuestro polinomio:
$ p(x) = 1 + 1x + \frac{2x^2}{2!} + \frac{6x^3}{3!} + \frac{24x^4}{4!} + \frac{120x^5}{5!} $
Reacomodamos un poco:
$ p(x) = 1 + x + x^2 + x^3 + x^4 + x^5 $
🤖
¿Tenés dudas? Pregúntale a ExaBoti
Asistente de IA para resolver tus preguntas al instante🤖
¡Hola! Soy ExaBoti
Para chatear conmigo sobre este ejercicio necesitas iniciar sesión
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.